Update on $K_{L,S} \rightarrow \pi^+\pi^-\gamma$

Michael Ronquest KTeV meeting Sep 6th 2008

Outline For Today's Talk

- Status of momentum slope out of fitter
- Next steps

Recap of Data/MC Problem

- Two choices:
 - Data/(Best Fit MC) ratio plots using plots out of KTeVana.
 - Data/(Reweighted Flat MC) ratio plots using plots out of my likelihood fitter.
- The two methods are not consistent
 - They should be
 - Biggest problem: a large data/MC momentum slope out of the fitter which isn't present in the analysis plots.....

What should happen

- Ratio of (data)/(Best Fit MC) from KTeVana for the 97 vac momentum plots:
- Not case for fitter

Tests --- Reweighting of Best Fit MC

- Can also feed Best Fit MC into fitter, and reweight with Best Fit parameters
 - Should do nothing
 - Compare plot after reweighting to plot before
 - No slopes introduced into vacuum beam plots
 - Slopes are introduced into reg beam plots
 - But fit uses reg treatment from KFIT, so this isn't a surprise
- Focus on vac beam, since treatment seems to be okay.....
 - Implies problem lies with treatment of flat MC

Tests --- Reweighting of Best Fit MC

- Ratio of (Best Fit MC w/o reweighting) / (Reweighted Best Fit MC) for 97 vac momentum
- Or (Before)/(After)

Tests --- Flat MC versus Best Fit MC

- Feed both Flat MC and Best Fit MC into fitter
 - Make separate plots for both samples

Ratio of (reweighted Best Fit MC)/(reweighted Flat MC)

for 1997 vac beam:

- Should be flat
- Isn't

Tests --- Flat MC versus Best Fit MC

- This slope could be due to a underflow issue in the histograms:
 - The histograms are filled with the weight W:
 - W = (new value of decay weight)/(generated value of decay rate)
 - W ~ 1 for best fit MC in most cases
 - W < 10^{-10} for flat MC (generated w = 1.0)
 - HBOOK only handles single precision bin contents
 - I've confirmed that the bin contents are NOT being increased for some events in the flat MC sample.
 - I've confirmed that the bin contents ARE being increased for best fit MC.

Tests --- Flat MC versus Best Fit MC

- Fix this by:
 - Rewrite the entire fitter in C++ so I can use ROOT.
 - bad joke, sorry
 - Or, spread flat MC sample over MANY jobs so that histograms do not overflow.
 - Then convert HBOOK files into ROOT files and then add together.
 - Or, output event data, with new weight from fitter, into a text file
 - Read text file using ROOT to make plots
 - Or, output event data, with new weight from fitter, into a double precision CW Ntuple
 - Sasha G told me how to do this during my FIRST WEEK at UVa!

To Do

- Fix issue with flat MC
 - Numerical problem?
 - This is confirmed. Is it enough?
 - Overlooked weight in flat MC?
 - **-** ?????
- Confirm treatment of reg beam is okay

To Do – From Last Meeting.....

- Once momentum issue is dealt with, measure momentum and z slopes out of fitter and redo the "flattening" systematics
 - Also attempt to determine correlation between z slope and momentum slope, and properly propagate error
- Produce "smoking gun plots"
 - data/MC ratios for E_{γ} and τ seem to work
 - So may Brad's subtraction idea

To Do

- Check resolution systematic and ensure that observed shift was not due to statistical fluctuation
- Check for double counting from the p_T^2 cut variation systematic and background systematic .
- Check E_{γ} (Lab Frame) cut variation too many events added or removed?
- Recheck other cut variations as well

To Do

- Rethink the correlations between cut variations...
- Draw total error ellipse and extract total correlations between fit parameters ala Appendix D from Epsilon Prime PRD
- Carefully recalculate the systematic error on $\eta_{+-\gamma}$ --> compute each individual shift using shifts in ehat, etc.

Extra Slides

Decay Rate for $K_{L,S} \rightarrow \pi^+\pi^-\gamma$

• The decay rate is:

$$\frac{dN}{d\tau dE_{\gamma} d\cos(\theta)} = N_{\kappa} \left[|\rho^{2}| \left[\frac{d\Gamma_{\kappa_{s} \to \pi^{+} \pi^{-} \gamma}}{dE_{\gamma} d\cos(\theta)} \right] e^{-\frac{\tau}{\tau_{s}}} + \left[\frac{d\Gamma_{\kappa_{L} \to \pi^{+} \pi^{-} \gamma}}{dE_{\gamma} d\cos\theta} \right] e^{-\frac{\tau}{\tau_{L}}} \right]$$

$$+2R e \left[\rho \frac{d \gamma_{LS}^*}{dE_{\gamma} d \cos(\theta)} e^{i \Delta m_{\kappa} \tau} \right] e^{-\left(\frac{1}{\tau_L} + \frac{1}{\tau_S}\right) \frac{\tau}{2}}$$

where:

$$\frac{d \gamma_{LS}}{dE_{\gamma} d \cos(\theta)} \propto \left[E_{IB} \left(K_{L} \right) + E_{DE} \left(K_{L} \right) \right] * \left[E_{IB}^{*} \left(K_{S} \right) + E_{DE}^{*} \left(K_{S} \right) \right] + M \left(K_{L} \right) M^{*} \left(K_{S} \right)$$

$$\frac{d \Gamma_{K_{L} \to \pi^{+} \pi^{-} \gamma}}{dE_{\gamma} d \cos(\theta)} \propto \left| E_{IB} \left(K_{L} \right) + E_{DE} \left(K_{L} \right) \right|^{2} + \left| M \left(K_{L} \right) \right|^{2}$$

$$\frac{d \Gamma_{K_{S} \to \pi^{+} \pi^{-} \gamma}}{dE_{\gamma} d \cos(\theta)} \propto \left| E_{IB} \left(K_{S} \right) + E_{DE} \left(K_{S} \right) \right|^{2}$$

Direct Vs Indirect CP Violation in E1

- The E1-DE K_L amplitude is a mixture of direct CP and indirect CP violating terms
- g_{E1} part of amplitude is present in K_L and K_S
- E-hat part is present in K₁ only

Decay Amplitudes

$$E_{IB}(K_S) = 4 \frac{M_K^2}{E_y^2} \frac{e^{i\delta_0}}{1 - \beta^2 \cos^2(\theta)}$$

$$E_{IB}(K_L) = 4 \frac{M_K^2}{E_{\gamma}^2} \frac{\eta_{+-} e^{i\delta_0}}{1 - \beta^2 \cos^2(\theta)}$$

$$M(K_S) = i \epsilon g_{M1} \left| \frac{a_1/a_2}{M_\rho^2 - M_K^2 + 2E_y M_K} + 1 \right| e^{i\delta_1}$$

$$M(K_L) = i g_{M1} \left| \frac{a_1/a_2}{M_\rho^2 - M_K^2 + 2 E_\gamma M_K} + 1 \right| e^{i\delta_1}$$

$$E_{DE}(K_S) = \frac{g_{E1}}{\epsilon} e^{i(\delta_1 + \phi_{\epsilon})}$$

$$E_{DE}(K_L) = g_{E1}e^{i(\delta_1 + \phi_{\epsilon})} + i 16 \hat{\epsilon} e^{i\delta_1}$$
indirect CPV direct CPV

CP conserving

CP violating

CP violating

CP conserving

CP conserving

CP violating

Amplitudes

Dependence On E_{γ}

Dependence On Cosθ

Projections of Decay Rate

- The decay rate will give the density of events in phase space $(\tau, E_{\gamma}, \cos\theta)$
- Plot of photon energy versus proper lifetime is interesting:

Kinematic Variables for $K \rightarrow \pi^+\pi^-\gamma^-$

Analysis Cuts

<u>IIIaiysis Cuis</u>	
Cut Variable	Keep Event If
Kaon Mass	$0.48967~GeV/c^2 < M_{\pi^+\pi^-\gamma} < 0.50567~GeV/c^2$
P_T^2 w.r.t Regenerator	$P_T^2 < 2.5 \times 10^{-4} \ GeV^2/c^2$
Kaon Momentum	$40.0 \text{ GeV/c} < P_{\pi^{+}\pi^{-}\gamma} < 160.0 \text{ GeV/c}$
Photon Energy in Lab Frame	$E_{\gamma}^* > 1.5 \mathrm{GeV}$
Photon Energy in Kaon Rest Frame, From Calorime-	$20.0 { m MeV} < E_{\gamma}^* < 175.0 { m MeV}$
ter	,
Photon Energy in Kaon Rest Frame, From Kinematics	$20.0 {\rm MeV} < E_{\gamma}^* < 175.0 {\rm MeV}$
$\pi\pi$ Invariant Mass, Implied From Above Cut	$20.0 { m MeV} < E_{\gamma}^* < 175.0 { m MeV}$ $0.2711 { m GeV}/c^2 < M_{\pi\pi} < 0.4772 { m GeV}/c^2$
Shape χ^2 For Photon Cluster	$\chi^2 < 48$
Outer Fiducial Cut For Photon Cluster	$\mathtt{ISEEDRING} < 18.1~\mathrm{cm}$
Inner Fiducial Cut For Photon Cluster	$\mathtt{ISMLRING2} > 4.5 \; \mathrm{cm}$
Photon/Track Separation at CsI	d > 30 cm
Number of CsI clusters	$\mathtt{NCLUS} \geq 3$
pp0kin w.r.t. Target	$-0.10 \; GeV^2/c^2 < P_{\pi^0}^2 < -0.0055 \; GeV^2/c^2$
L3 pp0kin	passes
Z vertex	125.5 m < VTXZ < 158.0 m
$\mathrm{E/p}$	E/p < 0.85
Track Momentum	$\mathtt{TRKP} > 8.0 \; \mathrm{GeV}$
Vertex χ^2	$\mathtt{VTXCHI} < 50.0$
Magnet Offset χ^2	$\mathtt{TRKOCHI} < 50.0$
Track x separation at CsI	$\Delta x > 3.0 \text{ cm}$
Track y separation at CsI	$\Delta y > 3.0 \text{ cm}$
Total track separation at CsI	$\Delta r > 20.0 \text{ cm}$
Number of Tracks	$\mathtt{NTRK} = 2$
$\Lambda \to p\pi$ invariant mass	$M_{p\pi} < 1.112 GeV/c^2 \text{ or } M_{p\pi} > 1.119 GeV/c^2$
Early energy in photon cluster	$\mathtt{ADCSI_EARLY} < 150 \; \mathrm{counts}$
In-time energy in photon cluster	$\mathtt{ADCSI_INTIM} > 115 \text{ counts}$
Photon/Upstream Track Projection at CsI	d > 2.0 cm distance
Reconstruction Routines	Return no errors
Veto Cuts	All pass
Level 1 Trigger Verification	Event passes
Fiducial Cuts	All pass
Number of Photon Candidates That Pass ALL Cuts	$N_{COMBINATIONS} = 1 \text{ ONLY}$